Inhibitory postsynaptic potentials in lumbar motoneurons remain depolarizing after neonatal spinal cord transection in the rat.
نویسندگان
چکیده
GABA and glycine are excitatory in the immature spinal cord and become inhibitory during development. The shift from depolarizing to hyperpolarizing inhibitory postsynaptic potentials (IPSPs) occurs during the perinatal period in the rat, a time window during which the projections from the brain stem reach the lumbar enlargement. In this study, we investigated the effects of suppressing influences of the brain on lumbar motoneurons during this critical period for the negative shift of the reversal potential of IPSPs (E(IPSP)). The spinal cord was transected at the thoracic level on the day of birth [postnatal day 0 (P0)]. E(IPSP), at P4-P7, was significantly more depolarized in cord-transected than in cord-intact animals (E(IPSP) above and below resting potential, respectively). E(IPSP) at P4-P7 in cord-transected animals was close to E(IPSP) at P0-P2. K-Cl cotransporter KCC2 immunohistochemistry revealed a developmental increase of staining in the area of lumbar motoneurons between P0 and P7 in cord-intact animals; this increase was not observed after spinal cord transection. The motoneurons recorded from cord-transected animals were less sensitive to the experimental manipulations aimed at testing the functionality of the KCC2 system, which is sensitive to [K(+)](o) and blocked by bumetanide. Although bumetanide significantly depolarized E(IPSP), the shift was less pronounced than in cord-intact animals. In addition, a reduction of [K(+)](o) affected E(IPSP) significantly only in cord-intact animals. Therefore influences from the brain stem may play an essential role in the maturation of inhibitory synaptic transmission, possibly by upregulating KCC2 and its functionality.
منابع مشابه
Glucose is an adequate energy substrate for the depolarizing action of GABA and glycine in the neonatal rat spinal cord in vitro.
In vitro studies have repeatedly demonstrated that the neurotransmitters γ-aminobutyric acid (GABA) and glycine depolarize immature neurons in many areas of the CNS, including the spinal cord. This widely accepted phenomenon was recently challenged by experiments showing that the depolarizing action of GABA on neonatal hippocampus and neocortex in vitro was prevented by adding energy substrates...
متن کاملGABA and glycine in the neonatal rat spinal cord in vitro
236 words) 26 27 In vitro studies have repeatedly demonstrated that the neurotransmitters γ-aminobutyric acid 28 (GABA) and glycine depolarize immature neurons in many areas of the central nervous 29 system, including the spinal cord. This widely accepted phenomenon was recently challenged 30 by experiments showing that the depolarizing action of GABA on neonatal hippocampus and 31 neocortex in...
متن کاملDifferential plasticity of the GABAergic and glycinergic synaptic transmission to rat lumbar motoneurons after spinal cord injury.
Maturation of inhibitory postsynaptic transmission onto motoneurons in the rat occurs during the perinatal period, a time window during which pathways arising from the brainstem reach the lumbar enlargement of the spinal cord. There is a developmental switch in miniature IPSCs (mIPSCs) from predominantly long-duration GABAergic to short-duration glycinergic events. We investigated the effects o...
متن کاملMorphological changes of lumbar spinal neurons after sciatic nerve transection in neonate rats
Axotomy of the sciatic nerve have been documented to cause neuronal loss, especially in newborn rats. Few works have focused on time course of neuronal loss and the type of cell death, which occurs after axotomy. Forty rat pups were anesthetized by hypothermia and the right sciatic nerve transected at five days of their age and the left side was used as control. The operated animals were sacrif...
متن کاملMorphological changes of lumbar spinal neurons after sciatic nerve transection in neonate rats
Axotomy of the sciatic nerve have been documented to cause neuronal loss, especially in newborn rats. Few works have focused on time course of neuronal loss and the type of cell death, which occurs after axotomy. Forty rat pups were anesthetized by hypothermia and the right sciatic nerve transected at five days of their age and the left side was used as control. The operated animals were sacrif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2006